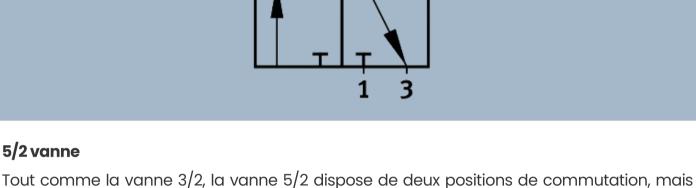
QU'EST-CE QU'UNE VANNE PNEUMATIQUE?

Une vanne pneumatique est un composant utilisé pour réguler le débit d'air dans un système pneumatique. Dans ce type de système, l'air comprimé est utilisé pour actionner des machines, des vérins ou des outils. La vanne détermine précisément où, quand et combien d'air circule dans le système. La fonction d'une vanne est de contrôler et de diriger l'air comprimé. Selon l'application, une vanne pneumatique peut laisser passer l'air, le bloquer, changer sa direction ou réguler la pression et la vitesse du flux d'air. Les vannes pneumatiques peuvent ainsi être utilisées comme vannes de commande, vannes de régulation ou même vannes de sécurité. Dans les situations dangereuses, elles peuvent couper automatiquement l'alimentation en air ou dépressuriser complètement le système afin d'éviter tout dommage ou blessure.

Raccords (ports) Les vannes ont généralement 2, 3 ou 5 ports.

- Dans le cas de deux ports, l'un sert à l'alimentation en air et l'autre au travail (par ex-
- emple, un cylindre). Un troisième port sert souvent à la purge.
- Les vannes à cinq ports sont utilisées pour commander des vérins à double effet : un
- port pour l'alimentation, deux pour le travail et deux pour la purge. Un port est simplement une ouverture filetée dans laquelle un raccord est inséré. Il s'agit généralement d'un raccord enfichable pour un raccordement direct au tuyau. Boîtier avec mécanisme de commutation Le boîtier contient le mécanisme qui
- achemine l'air comprimé vers le bon orifice. Selon le type de vanne et l'application, différentes techniques de commutation peuvent être utilisées, telles que des vannes à tiroir, des vannes à clapet ou des vannes à membrane. 3. Commande La commande veille à ce que la vanne commute au bon moment.
- Cela peut se faire de différentes manières :
 - Manuellement (par exemple, bouton-poussoir)
 - Mécaniquement (par exemple, par contact ou mouvement)
 - Pneumatiquement (par pression d'air)
 - Électriquement (via des bobines magnétiques)

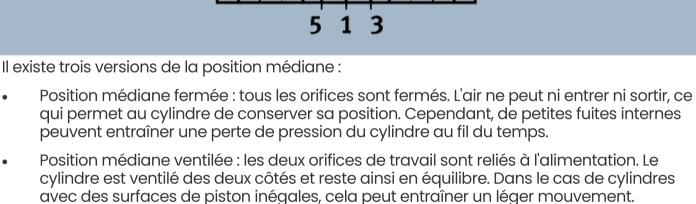

Les vannes pneumatiques se distinguent par le nombre de raccords (ports) et le nombre

COMMENT FONCTIONNE UNE VANNE?

de positions de commutation. Le type de commande joue également un rôle : les vannes peuvent être monostables ou bistables, et fonctionner en mode NO (normalement ouvert) ou NC (normalement fermé). Les différentes vannes permettent de réaliser différentes fonctions dans un système pneumatique.

3/2 Vanne

Une vanne 3/2 comporte trois orifices : un pour l'alimentation (1), un pour le travail (2) et un pour la purge (3). La vanne dispose de deux positions de commutation. Comme il n'y a qu'une seule sortie de travail, cette vanne ne permet de remplir qu'une seule chambre d'air comprimé. Elle convient donc aux vérins à simple effet, dans lesquels le retour est réalisé mécaniquement, par exemple à l'aide d'un ressort.


5/2 vanne

elle est équipée de cinq ports : un pour l'alimentation, deux pour le travail (4) et deux pour la purge (5). Cela permet d'aérer et de purger les deux chambres d'un actionneur, ce qui garantit un contrôle total des deux côtés du cylindre. Une vanne 5/2 permet donc de réaliser un mouvement entièrement pneumatique.

commutation supplémentaire : la position centrale. Cette position offre une position non commandée et est souvent utilisée dans les systèmes critiques pour la sécurité.

5/3 Vanne

- Position centrale ventilée : l'alimentation est fermée et les deux ports de travail sont ouverts à l'atmosphère. Le cylindre est sans pression des deux côtés et peut donc se déplacer facilement sous l'effet d'une légère force externe.
- Quelle est la différence entre une vanne 3/2 et une vanne 5/2? Une vanne 3/2 est utilisée avec des vérins à simple effet, dans lesquels une seule chambre est remplie d'air comprimé et le retour s'effectue mécaniquement. Une vanne 5/2 est

utilisée avec des vérins à double effet, dans lesquels les deux chambres sont alimentées en air pour un mouvement aller-retour complet. Une vanne 5/3 dispose d'une position centrale supplémentaire et est utilisée lorsqu'un vérin doit rester en position, être équilibré

ou être dépressurisé, par exemple dans les systèmes de sécurité ou de positionnement.

Normalement fermé (NC) et normalement ouvert (NO) Les termes « normalement fermé » (NC) et « normalement ouvert » (NO) indiquent la position dans laquelle se trouve la vanne lorsqu'elle n'est pas alimentée. Dans le cas d'une vanne NC, l'alimentation en air est coupée ; aucun flux d'air ne passe donc. Dans le cas d'une vanne NO, l'alimentation en air est ouverte ; la porte de travail est alimentée en air au repos.

Notez la différence avec les systèmes électriques : en électricité, NC signifie que le circuit est fermé et que le courant circule. En pneumatique, on raisonne en termes de ports. Ouvert ou fermé pour les applications pneumatiques, alors qu'en électricité, on raisonne en termes de

Vannes monostables et bistables Outre le mode de commande, le nombre de commandes joue également un rôle dans le fonctionnement d'une vanne. Il existe des modèles monostables (simples) et bistables (doubles).

Une vanne monostable dispose d'une seule commande. Lorsqu'elle est activée, la vanne commute et, dès que la commande est relâchée, elle revient automatiquement à sa posi-

ponts. Ouvert ou fermé pour le courant.

tion de repos, généralement à l'aide d'un ressort ou de la pression atmosphérique. Vanne bistable Une vanne bistable dispose de deux commandes. Elle commute lors d'une brève impulsion et reste dans cette position jusqu'à ce que la deuxième commande soit activée. La vanne

peut ainsi rester stable dans les deux positions, ce qui est pratique dans les applications où

la position doit être maintenue en cas de perte de tension ou d'arrêt d'urgence.

Vanne monostable

QUELS TYPES DE VANNES PNEUMATIQUES EXISTE-T-IL?

Il existe différents types de vannes pneumatiques, chacune ayant une fonction spécifique dans un système pneumatique. Il existe notamment des régulateurs de pression, des clapets anti-retour, des vannes d'étranglement, des électrovannes et des vannes d'inversion. Une soupape d'étranglement régule la vitesse d'un cylindre en limitant ou en contrôlant le débit d'air, ce qui permet d'exécuter les mouvements des actionneurs pneumatiques avec plus de précision. Une électrovanne est commandée électriquement par un électroaimant et peut ouvrir ou fermer rapidement une soupape, ce qui permet l'automatisation et la synchronisation précise de l'alimentation en air. Une vanne de commutation permet de diriger l'air comprimé d'une sortie à l'autre, en fonction de la position de commutation, et est souvent utilisée pour commander des vérins à double effet dans deux directions, par exemple. La combinaison de ces différentes vannes permet de commander les systèmes pneumatiques de manière efficace, fiable et sûre.

