PNEUMATIC THRUSTER SLIDE

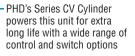
SCV

Major Benefits

- · Oversized guide rods
- · Simple design
- · Ideal for vertical or non-rotating applications
- · Easy tooling mounting to tool plate
- · Eight bore sizes to fit a wide range of applications
- · Units are powered by PHD's rugged Series CV Cylinder

Rodlok can be added to securely hold a static tool plate in place at any point of travel desired

ideal for applications where rod drift due to system leakage, air line rupture, or electric power loss is unacceptable



anodized aluminum alloy body is supplied with counterbored holes for easy mounting of tooling and fixturing

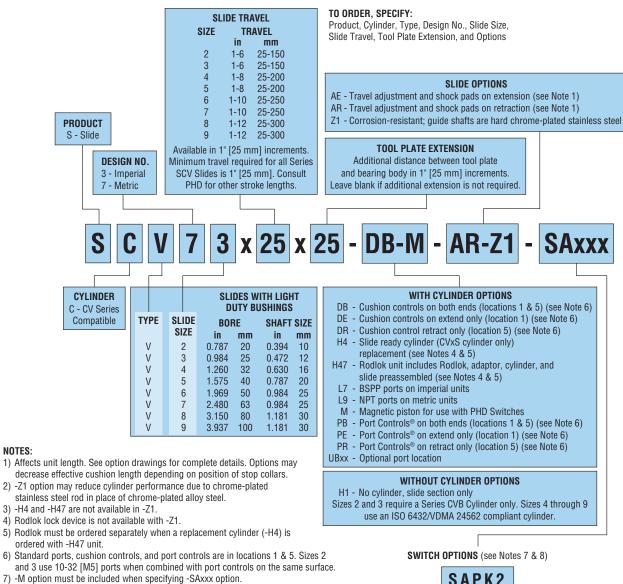
optional cushions and port controls available

precision ground hardened guide shafts provide smooth, precise linear motion

corrosion-resistant zinc-plated fasteners

optional stroke adjustment collars with shock pads are available on both extend and retract

steel-backed composite bearings with oil wick for improved performance and load capacities



SCV Slides for 2-axis movement

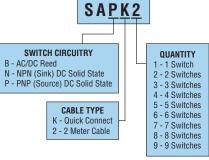
ORDERING DATA: Series SCV Slides

- 8) Switch(es) included, but not installed. Cordsets for Quick Connect are ordered separately.
- 9) Replacement switches are available. See charts below.

CORDSETS WITH QUICK CONNECT

NOTES:

PART NO.	CABLE LENGTH
61397-02	2 meter, 3 wire
61397-05	5 meter, 3 wire


NOTE: This cordset is used for both 3-wire and 2-wire applications. When used in 2-wire applications, refer to the schematic and disregard the black wire.

SERIES 6250 REED SWITCHES

	PART NO.	DESCRIPTION	COLOR
6	2507-1-02	AC/DC Reed, 2 meter cable	Silver
	62517-1	AC/DC Reed, Quick Connect	Silver

SERIES 6250 SOLID STATE SWITCHES

PART NO.	DESCRIPTION	COLOR
62505-1-02	NPN (Sink) DC Solid State, 2 meter cable	Brown
62506-1-02	PNP (Source) DC Solid State, 2 meter cable	Tan
62515-1	NPN (Sink) DC Solid State, Quick Connect	Brown
62516-1	PNP (Source) DC Solid State, Quick Connect	Tan

Options may affect unit length. See dimensional pages and option information details.

CAD & Sizing Assistance

Use PHD's free online Product Sizing and CAD Configurator at phdinc.com/myphd

ENGINEERING DATA: Series SCV Slides

SPECIFICATIONS	SERIES SCV
OPERATING PRESSURE	35 psi min to 150 psi max [2.4 bar min to 10 bar max] air
OPERATING TEMPERATURE	-20° to +180°F [-29° to +82°C]
TRAVEL TOLERANCE	See table below
REPEATABILITY	± 0.001 in [± 0.025 mm] of original position
VELOCITY	80 in/sec [2 m/sec] max., zero load at 87 psi [6.9 bar]
LUBRICATION	Factory lubricated for rated life
MAINTENANCE	Field repairable

UNIT SIZE	GUIDE S DIAMI		BOI DIAMI		CYLINDI DIAM		SLIDE DIRECTION	EFFECTIVE AREA		BASE V	VEIGHT	TYPICAL Dynamic Load	
OIZL	in	mm	in	mm	in	mm	DITLOTION	in ²	mm ²	lb	kg	lb	N
2	0.204	10	0.707	20	0.015	8	EXTEND	0.49	314	1 CF . (0 17 v.T)	0.75 · (0.000 · T)	9	40
2	0.394	10	0.787	20	0.315	0	RETRACT	0.41	264	1.65 + (0.17 x T)	0.75 + (0.003 x T)	9	40
3	0.472	12	0.984	25	0.204	10	EXTEND	0.76	491	0.00 · (0.00 v.T)	1.01 · (0.004 · T)	17	74
3	0.472	12	0.984	25	0.394	10	RETRACT	0.64	412	2.22 + (0.22 x T)	1.01 + (0.004 x T)	17	/4
4	0.000	16	1 000	32	0.470	12	EXTEND	1.25	804	0.70 · (0.05 v.T)	1.00 · (0.000 v.T)	27	122
4	0.630	16	1.260	32	0.472	12	RETRACT	1.07	691	3.70 + (0.35 x T)	1.68 + (0.006 x T)	21	122
5	0.787	20	1.575	40	0.630	30 16	EXTEND	1.95	1257	5.80 + (0.50 x T)	2.62 . (0.000 v.T)	38	171
5	0.707	20	1.575	40	0.030	10	RETRACT	1.64	1056	5.00 + (0.50 X I)	2.63 + (0.009 x T)	30	1/1
6	0.984	25	1.969	50	0.787	20	EXTEND	3.04	1963	10.62 + (0.75 x T)	(0.75 v.T)		244
O	0.904	25	1.909	30	0.767	20	RETRACT	2.56	1649	10.02 + (0.75 x 1)	4.82 + (0.013 x T)	55	244
7	0.984	25	2.480	63	0.787	20	EXTEND	4.83	3117	13.49 + (0.79 x T)	6 12 . (0 014 v T)	83	367
1	0.904	25	2.400	03	0.707	20	RETRACT	4.34	2803	13.49 + (0.79 X I)	6.12 + (0.014 x T)	03	307
8	1.181	30	3.150	80	0.984	25	EXTEND	7.79	5027	25.26 + (1.14 x T)	11.46 + (0.020 x T)	110	490
0	1.101	30	3.150	00	0.904	20	RETRACT	7.03	4536	20.20 + (1.14 X I)	11.40 + (0.020 X I)	110	490
9	1.181	30	3.937	100	0.984	25	EXTEND	12.17	7854	34.39 + (1.22 x T)	20 - (1 22 × T) 15 00 - (0 220 × T)		734
9	1.101	30	3.837	100	0.904	25	RETRACT	11.41	7363	U+.UU + (1.ZZ X 1)	15.60 + (0.022 x T)	165	134

NOTES:

- 1) T = Travel length inches [mm]
- 2) Thrust capacity, allowable mass, and dynamic moment capacity must be considered when selecting a slide.
- 3) For additional speed information, see Series CV Cylinders.

TOTAL TRAVEL TOLERANCES

Tolerance on nominal travel length is shown in the following table:

UNIT	NOMINAI	_ TRAVEL	NOMINAL TRAVEL TOLERANCE*						
SIZE	in	mm	in	mm					
2, 3	L ≤ 4	L ≤ 100	+0.059/-0.000	+1.50/-0.000					
2, 3	L > 4	L > 100	+0.079/-0.000	+2.00/-0.000					
1 E C	L ≤ 20	L ≤ 500	+0.079/-0.000	+2.00/-0.000					
4, 5, 6	L > 20	L > 500	+0.126/-0.000	+3.20/-0.000					
7 0 0	L ≤ 20	L ≤ 500	+0.098/-0.000	+2.50/-0.000					
7, 8, 9	L > 20	L > 500	+0.157/-0.000	+4.00/-0.000					

NOTE: *Travel tolerance values measured at 60 ±4 psi due to impact seal design.

CYLINDER FORCE CALCULATIONS									
	Imperial F = P x A	Metric F = 0.1 x P x A							
F = Cylinder Force	lbs	N							
P = Operating Pressure A = Effective Area (Extend or Retract)	psi in²	bar mm²							

Application & Sizing Assistance

Use PHD's free online Product Sizing and Application at www.phdinc.com/apps/sizing

SLIDE SELECTION

There are four major factors to consider when selecting a slide.

MAXIMUM ROLLING LOAD (Horizontal Applications Only)
The Maximum Rolling Load Graphs (pages 98 to 100) are based on the load capacity of the bearings. These graphs show total travel (see definition below), attached load, and speed. By plotting any two of these three parameters it is possible to determine the maximum allowable value of the

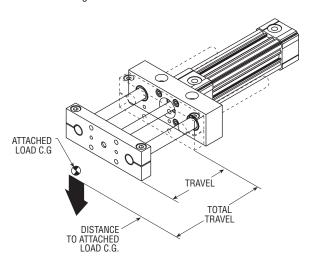
MAXIMUM KINETIC ENERGY

3

third for a specific slide.

To determine the appropriate type of deceleration for the application, first, calculate total moving load.

- a) Determine guide shaft and tool plate moving load WM from the table below.
- b) Total Moving Load = Wm + Attached Load


Next, plot the total moving load and impact velocity on the Kinetic Energy Graphs (pages 98 to 100). The line(s) above the point represent the acceptable means of decelerating the load. If the point falls above all three lines, choose a larger slide or modify the application parameters.

SHAFT DEFLECTION
Use the Deflection Graphs (page 101) to determine if the deflection of the slide is within acceptable limits for the application. The Deflection Graphs for horizontal applications account for bearing and shaft clearances, tool plate and guide shaft weight, and are based on representative loads within the range of each slide. The graphs for vertical applications account for bearing and shaft clearances only.

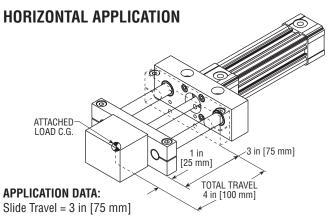
4

AIR CYLINDER THRUST

Use the effective piston area (see cylinder thrust calculation and specifications on previous page) to determine if the cylinder has sufficient thrust to move the total moving load as calculated at left. Maintain a minimum ratio of thrust to total moving load of 2 to 1.

DEFINITION OF TOTAL TRAVEL:

When the center of gravity (c.g.) of the attached load is located at a distance in front of the face of the slide tool plate, this distance should be added to the slide stroke length and any tool plate extension to establish the total travel. This total travel should be used in the Maximum Rolling Load Graphs.


Total Travel = Slide Travel + Tool Plate Extension + Distance to Attached Load c.g.

GUIDE SHAFT AND TOOL PLATE MOVING LOAD (WM) Ib [kg]

						TRAVEL	in [mm]					
MODEL	1 [25]	2 [50]	3	4 [100]	5 [125]	6 [150]	7 [175]	8 [200]	9 [225]	10 [250]	11 [275]	12 [300]
			[75]				[1/0]	[200]	[223]	[230]	[2/0]	[300]
SCVx2	0.53	0.60	0.67	0.74	0.81	0.88	_	_	_	_	_	
00112	[0.24]	[0.27]	[0.3]	[0.34]	[0.37]	[0.4]						
001/0	0.71	0.81	0.91	1.01	1.11	1.21						
SCVx3	[0.32]	[0.37]	[0.41]	[0.46]	[0.5]	[0.55]	_	_	_	_	_	_
001/4	1.1	1.3	1.5	1.7	1.8	2.0	2.2	2.4				
SCVx4	[0.5]	[0.6]	[0.7]	[0.8]	[0.8]	[0.9]	[1]	[1.1]	_	_	_	_
001/ 5	2.0	2.3	2.6	2.9	3.1	3.4	3.7	4.0				
SCVx5	[0.9]	[1.1]	[1.2]	[1.3]	[1.4]	[1.6]	[1.7]	[1.8]	_	_	_	_
0014.0	3.9	4.3	4.8	5.2	5.6	6.1	6.5	6.9	7.4	7.8		
SCVx6	[1.8]	[2]	[2.2]	[2.4]	[2.6]	[2.8]	[2.9]	[3.1]	[3.3]	[3.5]	_	_
0014.7	4.6	5.0	5.4	5.9	6.3	6.7	7.2	7.6	8.0	8.5		
SCVx7	[2.1]	[2.3]	[2.5]	[2.7]	[2.9]	[3.1]	[3.3]	[3.4]	[3.6]	[3.8]	_	_
0014.0	9.1	9.7	10.3	10.9	11.6	12.2	12.8	13.4	14.1	14.7	15.3	15.9
SCVx8	[4.1]	[4.4]	[4.7]	[5]	[5.2]	[5.5]	[5.8]	[6.1]	[6.4]	[6.7]	[6.9]	[7.2]
001/40	11.5	12.1	12.7	13.4	14.0	14.6	15.2	15.9	16.5	17.1	17.7	18.3
SCVx9	[5.2]	[5.5]	[5.8]	[6.1]	[6.3]	[6.6]	[6.9]	[7.2]	[7.5]	[7.8]	[8]	[8.3]

Required Speed = 20 in/sec [0.51 m/sec]
Attached Load = 12 lb [5.4 kg], c.g. of load is 1 in [25 mm] from face of tool plate (c.g. location is needed to calculate total travel)
Operating Pressure = 60 psi [4 bar]

SLIDE SIZING

1. Determine Maximum Rolling Load

- a) Calculate Total Travel = Slide Travel + Distance to Load c.g. = 3 in + 1 in = 4 in [= 75 mm + 25 mm = 100 mm]
- b) Plot total travel and required speed on Maximum Rolling Load Graphs (next three pages). The SCVx6 is acceptable, because for these parameters the slide can carry an attached load of 19 lb [8.6 kg] larger than the actual 12 lb [5.4 kg] load for this application.

2. Determine Maximum Kinetic Energy

- a) Guide shaft and tool plate moving load is 4.8 lb [2.2 kg] (from table on previous page for SCVx6 with 3 in [75 mm] travel)
- b) Total Moving Load = 4.8 lb + 12 lb (attached load) = 16.8 lb [= 2.2 kg + 5.4 kg = 7.6 kg]
- c) Plot total moving load and velocity on the Kinetic Energy Graph for the SCVx6 (page 99). Since the point falls above the line for the cylinder only, appropriate deceleration methods would be either travel adjustment with shock pads or a cylinder with cushions.

3. Shaft Deflection

 a) Using the Deflection Graphs for horizontal applications (page 101), verify that for the total travel of the selected slide the deflection is acceptable.

4. Air Cylinder Thrust

a) Using the effective piston area and the operating pressure, verify that the cylinder has sufficient thrust for the application. Effective Piston Area = 2.56 in² [1649 mm²] (from page 95) Cylinder Thrust = 2.56 in² x 60 psi = 154 lb [= 0.1 x 1649 mm² x 4 = 660 N] Total Moving Weight = 16.8 lb [7.6 kg x 9.8 m/sec² = 75 N]

The cylinder thrust is significantly more than the total moving weight and is therefore acceptable.

VERTICAL APPLICATION

APPLICATION DATA:

Slide Travel = 10 in [250 mm] Required Speed = 40 in/sec [1 m/sec] Attached Load = 5 lb [2.3 kg] Operating Pressure = 60 psi [4 bar]

SLIDE SIZING

The required slide travel is 10 in [250 mm], and therefore an SCVx6 or larger slide must be used.

1. Determine Maximum Rolling Load

a) Since the application is vertical, this step is not necessary.

2. Determine Maximum Kinetic Energy

Without knowing which specific slide is going to be used, this step may require some iterations. Start with the SCVx6 since it is the smallest Series SCV Slide with the necessary travel.

- a) The guide shaft and tool plate moving load is 7.8 lb [3.5 kg] (from table on previous page for SCVx6 with 10 in [250 mm] travel).
- b) Total Moving Load = 7.8 lb + 5 lb = 12.8 lb [= 3.5 kg + 2.3 kg = 5.8 kg]
- c) Plot total moving load and velocity on the kinetic energy graph for the SCVx6 (page 99).
- d) The point is below the "cylinder with cushion" curve but above the other two curves. Therefore to use the SCVx6, a cylinder with cushions would be required to decelerate the load. (A larger slide could be used if desired but the total moving load would need to be adjusted to determine the appropriate deceleration method using the kinetic energy graphs.)

3. Shaft Deflection

a) Using the vertical application Deflection Graphs (page 101), verify that for the total travel of the selected slide the deflection is acceptable. Note that the deflection shown on this graph represents the total side play of the slide with no load applied.

4. Air Cylinder Thrust

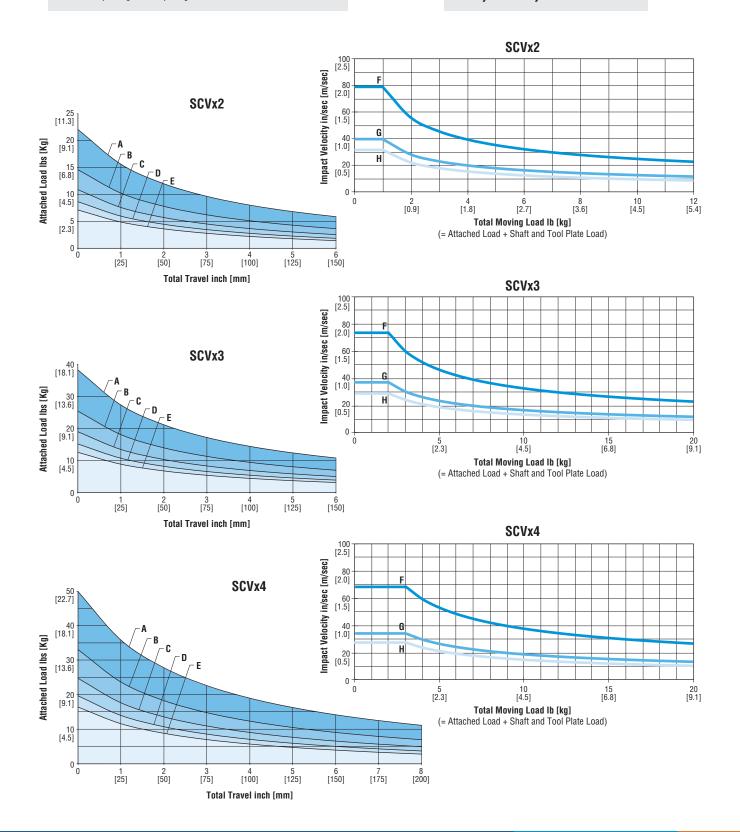
a) Using the effective piston area and the operating pressure, verify that the cylinder has sufficient thrust for the application. Effective Piston Area = 2.56 in² [1649 mm²] (from page 95) Cylinder Thrust = 2.56 in² x 60 psi = 154 lb [= 0.1 x 1649 mm² x 4 = 660 N] Total Moving Weight = 12.8 lb [5.8 kg x 9.8 m/sec² = 57 N]

The cylinder thrust is significantly more than the total moving weight and is therefore acceptable.

MAXIMUM ROLLING LOAD GRAPHS

D = 25 in/sec [0.64 m/sec]

A = 10 in/sec [0.25 m/sec] B = 15 in/sec [0.38 m/sec] C = 20 in/sec [0.51 m/sec]


E = 30 in/sec [0.76 m/sec]

KINETIC ENERGY GRAPHS

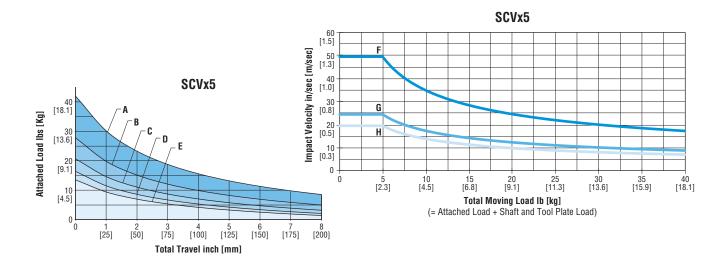
F = Cylinder with cushion

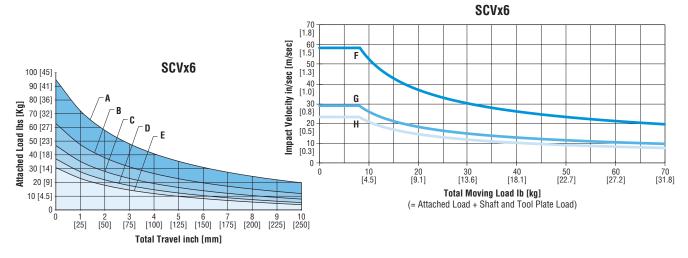
G = Travel adjustment and shock pad

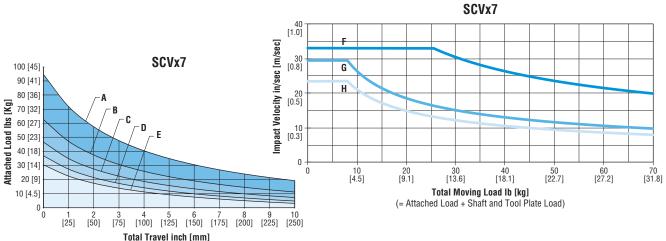
H = Cylinder only

MAXIMUM ROLLING LOAD GRAPHS

A = 10 in/sec [0.25 m/sec] D = 25 in/sec [0.64 m/sec] B = 15 in/sec [0.38 m/sec] E = 30 in/sec [0.76 m/sec]


C = 20 in/sec [0.51 m/sec]


KINETIC ENERGY GRAPHS


 $\boldsymbol{F} = \boldsymbol{Cylinder} \ with \ \boldsymbol{cushion}$

G = Travel adjustment and shock pad

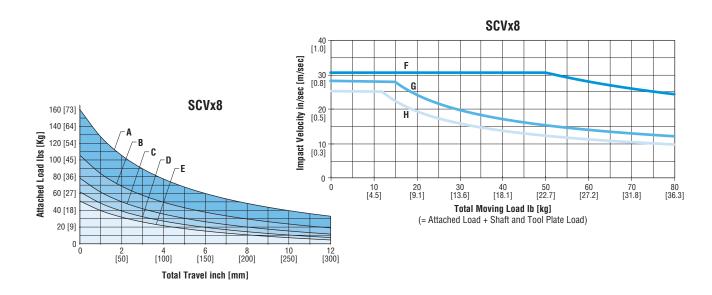
H = Cylinder only

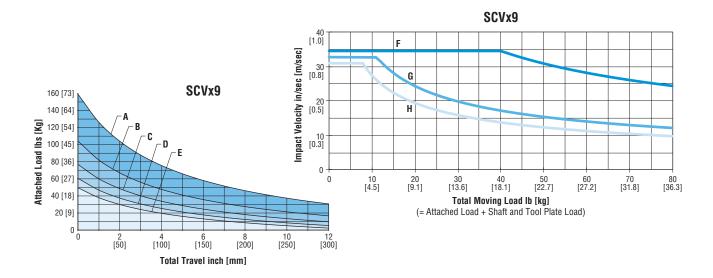
MAXIMUM ROLLING LOAD GRAPHS

D = 25 in/sec [0.64 m/sec]

B = 15 in/sec [0.38 m/sec] C = 20 in/sec [0.51 m/sec]

A = 10 in/sec [0.25 m/sec]

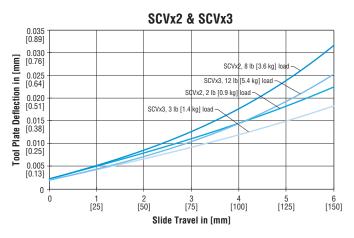

E = 30 in/sec [0.76 m/sec]

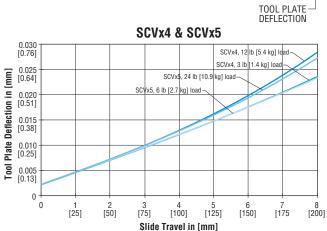

KINETIC ENERGY GRAPHS

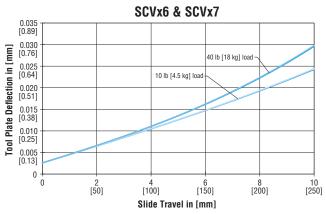
F = Cylinder with cushion

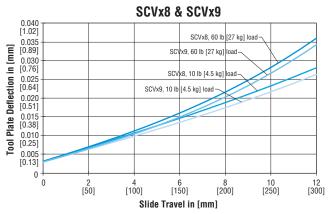
G = Travel adjustment and shock pad

H = Cylinder only

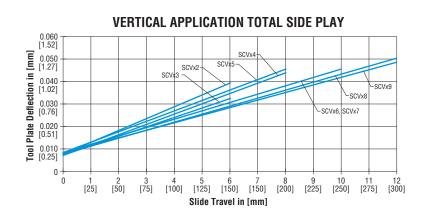


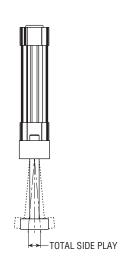



SIZING: Series SCV Slides

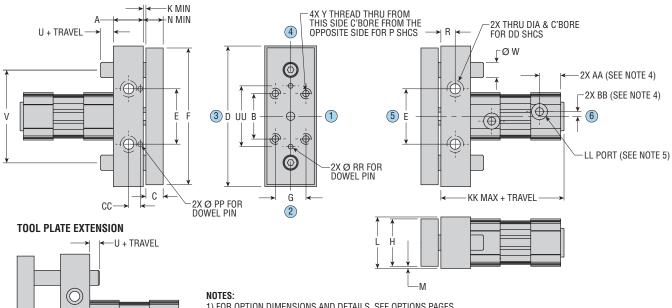

DEFLECTION GRAPHS: HORIZONTAL APPLICATIONS

Deflections shown below are for representative light and heavy loads for each size slide.





DEFLECTION GRAPHS: VERTICAL APPLICATIONS



DIMENSIONS: Series SCV Slides

- 1) FOR OPTION DIMENSIONS AND DETAILS, SEE OPTIONS PAGES.
- 2) ALL DIMENSIONS ARE CENTERED ON CENTERLINE OF UNIT UNLESS OTHERWISE SPECIFIED.
- 3) UNIT TRAVEL = STROKE + TOOL PLATE EXTENSION. THE TOTAL UNIT TRAVEL SHOULD NOT EXCEED THE MAXIMUM RECOMMENDED TRAVEL.
- 4) PORTS MAY APPEAR ON EITHER SIDE OF THE SLIDE CENTERLINE BASED ON OPTION COMBINATIONS.
- 5) ALL UNITS, EXCEPT PORT WTH PORT CONTROL ON SAME SIDE, COMPLY WITH DIN 3852 PART 2 PORT SPECIFICATIONS FOR SHORT STUD AND LARGE SEALING SURFACE.

DOWEL HOLE TOLERANCES

PP & RR Ø HOLE	DOWEL HOLE Tolerance
0.1976 [5]	+0.0005/-0.0005 [+0.032/+0.006]
0.3156 [8]	+0.0005/-0.0005 [+0.029/+0.004]

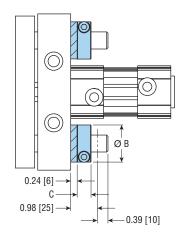
LETTER								MODE	L NUMBE	R						
DIM	SC	Vx2	SC	/x3	SC	Vx4	S	CVx5	S	CVx6	S	CVx7	S	CVx8	S	CVx9
DIM	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
PHD CYL. BORE	0.787	20.0	0.984	25.0	1.260	32.0	1.575	40.0	1.969	50.0	2.480	63.0	3.150	80.0	3.937	100.0
Α	1.102	28.0	1.299	33.0	1.220	31.0	1.417	36.0	1.772	45.0	1.772	45.0	2.205	56.0	2.402	61.0
В	1.516	38.5	1.969	50.0	1.870	47.5	2.283	58.0	2.559	65.0	3.150	80.0	3.543	90.0	4.724	120.0
C	0.630	16.0	0.669	17.0	0.709	18.0	0.906	23.0	1.220	31.0	1.220	31.0	1.732	44.0	1.732	44.0
D	4.409	112.0	4.783	121.5	5.787	147.0	6.929	176.0	8.563	217.5	8.563	217.5	10.748	273.0	11.339	288.0
Е	1.969	50.0	1.870	47.5	2.283	58.0	2.559	65.0	3.150	80.0	3.543	90.0	4.724	120.0	5.315	135.0
F	4.252	108.0	4.626	117.5	5.630	143.0	6.772	172.0	8.406	213.5	8.406	213.5	10.591	269.0	11.181	284.0
G	0.906	23.0	1.181	30.0	1.260	32.0	1.417	36.0	1.772	45.0	1.417	36.0	1.496	38.0	1.969	50.0
Н	1.417	36.0	1.614	41.0	1.890	48.0	2.283	58.0	2.717	69.0	3.386	86.0	3.937	100.0	4.921	125.0
K	0.098	2.5	0.099	2.5	0.118	3.0	0.118	3.0	0.118	3.0	0.118	3.0	0.118	3.0	0.118	3.0
L	1.575	40.0	1.772	45.0	2.047	52.0	2.441	62.0	2.874	73.0	3.543	90.0	4.331	110.0	5.315	135.0
M	0.079	2.0	0.079	2.0	0.079	2.0	0.079	2.0	0.079	2.0	0.079	2.0	0.197	5.0	0.197	5.0
N	0.728	18.5	0.768	19.5	0.827	21.0	1.024	26.0	1.338	34.0	1.338	34.0	1.850	47.0	1.850	47.0
Р	#6	M4	#10	M4	1/4	M6	5/16	M8	3/8	M10	3/8	M10	1/2	M12	1/2	M12
R	0.630	16.0	0.709	18.0	0.709	18.0	0.906	23.0	1.063	27.0	1.063	27.0	1.299	33.0	1.299	33.0
U	0.394	10.0	0.394	10.0	0.394	10.0	0.394	10.0	0.394	10.0	0.394	10.0	0.394	10.0	0.394	10.0
V	2.992	76.0	3.189	81.0	3.819	97.0	4.606	117.0	5.630	143.0	5.630	143.0	7.283	185.0	7.874	200.0
W	0.394	10.0	0.472	12.0	0.630	16.0	0.787	20.0	0.984	25.0	0.984	25.0	1.181	30.0	1.181	30.0
Υ	10-32	M5 x 0.8	1/4-20	M6 x 1	5/16-24	M8 x 1.25	3/8-24	M10 x 1.5	7/16-20	M12 x 1.75	7/16-20	M12 x 1.75	5/8-18	M16 x 2.0	5/8-18	M16 x 2.0
AA	0.354	9.0	0.354	9.0	0.630	16.0	0.728	18.5	0.728	18.5	0.787	20.0	0.709	18.0	0.866	22.0
BB	0.167	4.2	0.177	4.5	0.197	5.0	0.236	6.0	0.236	6.0	0.394	10.0	0.394	10.0	0.472	12.0
CC	0.355	9.0	0.374	9.5	0.472	12.0	0.630	16.0	0.709	18.0	0.748	19.0	0.984	25.0	0.984	25.0
DD	1/4	M6	5/16	M8	3/8	M10	7/16	M12	7/16	M12	5/8	M16	3/4	M20	3/4	M20
KK	3.819	97.0	4.134	105.0	5.079	129.0	5.709	145.0	6.102	155.0	6.693	170.0	7.402	188.0	7.992	203.0
LL	1/8	G 1/8	1/8	G 1/8	1/8	G 1/8	1/4	G 1/4	1/4	G 1/4	3/8	G 3/8	3/8	G 3/8	1/2	G 1/2
PP	0.1976	5.0	0.1976	5.0	0.1976	5.0	0.3156	8.0	0.3156	8.0	0.3156	8.0	0.3156	8.0	0.3156	8.0
RR	0.1976	5.0	0.1976	5.0	0.1976	5.0	0.3156	8.0	0.3156	8.0	0.3156	8.0	0.3156		0.3156	8.0
UU	1.929	49.0	1.969	50.0	1.870	47.5	2.953	75.0	3.543	90.0	3.150	80.0	3.543	90.0	4.724	120.0

CAD & Sizing Assistance

Use PHD's free online Product Sizing and CAD Configurator at phdinc.com/myphd

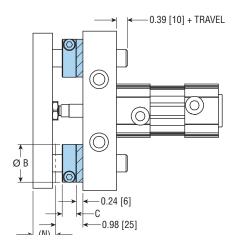
All dimensions are reference only unless specifically toleranced.

RICE.


EXTENSION

TRAVEL ADJUSTMENT AND SHOCK PADS ON EXTENSION

Two travel adjustment stop collars with polyurethane shock pads are used for adjustment of slide extension. The travel adjustment stop collars allow precise adjustment while the shock pads eliminate metal to metal contact, thereby reducing noise levels.


(SHOWN WITH ZERO TRAVEL)

AR

TRAVEL ADJUSTMENT AND SHOCK PADS ON RETRACTION

Two travel adjustment stop collars with polyurethane shock pads are used for adjustment of slide retraction. The travel adjustment stop collars allow precise adjustment while the shock pads eliminate metal to metal contact, thereby reducing noise levels.

Ī	LETTER		MODEL NUMBER														
	DIM	SCVx2 SCVx3 SCVx4 SCVx5		SCVx6		SCVx7		SCVx8		SCVx9							
	ווווט	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
ı	ØB	0.984	25	1.102	28	1.378	35	1.654	42	1.890	48	1.890	48	2.165	55	2.165	55
	С	0.394	10	0.433	11	0.512	13	0.591	15	0.591	15	0.591	15	0.591	15	0.591	15
	N	0.728	18.5	0.768	19.5	0.827	21	1.024	26	1.339	34	1.339	34	1.850	47	1.850	47

NOTE: -AE and -AR options may decrease effective cushion length depending on position of stop collars.

CORROSION RESISTANT

This option provides a stainless steel piston rod with hard chrome plating in place of the standard hard chrome plated steel material. Guide shafts are hard chrome plated stainless steel. An appropriate corrosion resistant treatment is applied to ferrous parts.

BSPP PORTS (On imperial units)

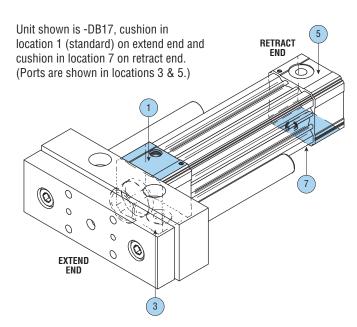
This option provides G (BSPP) ports on imperial (SCV3x) units instead of the standard NPT ports. The G (BSPP) ports are located in the same location as the NPT ports.

NPT PORTS (On metric units)

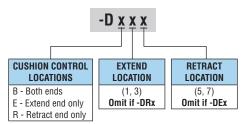
This option provides NPT ports on metric (SCV7x) units instead of the standard BSPP ports. The NPT ports are located in the same location as the BSPP ports.

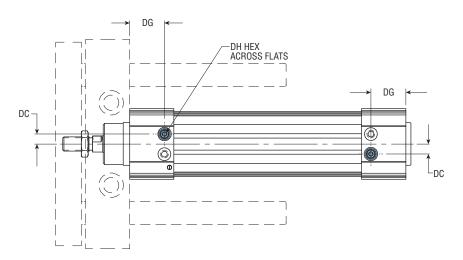
MODEL	NPT PORT	BSPP PORT
SCVx2	1/8*	G 1/8*
SCVx3	1/8*	G 1/8*
SCVx4	1/8	G 1/8
SCVx5	1/4	G 1/4
SCVx6	1/4	G 1/4
SCVx7	3/8	G 3/8
SCVx8	3/8	G 3/8
SCVx9	1/2	G 1/2

NOTE: *When port controls are specified on the same face as ports, the metric port is M5 and the imperial port is a 10-32 port.


OPTIONS: Series SCV Slides

DB CUSHION CONTROL IN BOTH DIRECTIONS (Standard location 1 & 5)


DE CUSHION CONTROL ON EXTEND ONLY (Standard location 1)


CUSHION CONTROL ON RETRACT ONLY (Standard location 5)

PHD cushions are designed for smooth deceleration at the ends of cylinder stroke. When the cushion is activated, the remaining volume in the cylinder must exhaust past an adjustable needle valve which controls the amount of deceleration. The effective cushion length for each bore size is shown in the table below. To specify alternative cushion control locations on the head or cap, see the option code below right.

CUSHION CONTROL OPTIONS

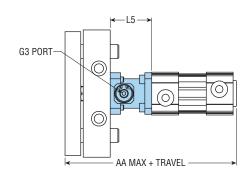
								MODEL	NUMBER	1						
LETTER DIM	SCVx2		SCVx3		SC	SCVx4		SCVx5		SCVx6		Ix7	SCVx8		SCVx9	
	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
DC	0.190	4.8	0.226	5.7	0.276	7.0	0.374	9.5	0.394	10.0	0.354	9.0	0.591	15.0	0.630	16.0
DG	0.581	14.8	0.561	14.2	0.965	24.5	1.083	27.5	1.043	26.5	1.201	30.5	1.181	30.0	1.339	34.0
DH	_	2.5	_	2.5	_	2.5	_	2.5	_	2.5	_	2.5	_	3.0	_	3.0
EFFECTIVE CUSHION LENGTH*	0.441	11.2	0.468	11.9	0.599	15.2	0.808	20.5	0.871	22.1	0.805	20.4	0.892	22.7	1.190	30.2

NOTE: -AE and -AR options may decrease effective cushion length depending on position of stop collars.

H47

RODLOK SLIDE & RODLOK

PHD's Rodlok is ideal for locking the tool plate while in a static/ stationary position. When the pressure is removed from the port of the Rodlok, the mechanism will grip the piston rod of the cylinder and prevent it from moving. The loads are held indefinitely without power. Rodlok performance is application and environment sensitive (cleanliness of rod or Rodlok will also affect performance).


THE RODLOK IS NOT DESIGNED TO BE USED AS A PERSONAL SAFETY DEVICE.

SIZE	STATIC LOCK	(ING FORCE*
SIZE	lb	N
2	79	350
3	90	400
4	135	600
5	225	1000
6	337	1500
7	495	2200
8	674	3000
9	1124	5000

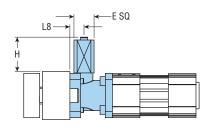
NOTE: *Locking force indicated above is the actual locking force with a dry, clean rod and does not include any safety factor.

OPERATING PRESSURE

The operating pressure for the locking device is different than the operating pressure for the slide to which it is attached. The locking device of the Rodlok is designed with an operating pressure range of 60 psi minimum to 150 psi maximum [4 to 10 bar]. The Series SCV Slide with a Rodlok attached has an operating pressure range of 45 psi minimum to 150 psi maximum [3 to 10 bar].

RODLOK KITS

		~		
SIZE	LOCKING DEVICE KIT	ADAPTOR KIT*	COMPLETE Rodlok*	IMPERIAL PORT ADAPTOR
2	63459-07-1	63460-07-1	63461-07-1	_
3	63459-08-1	63460-08-1	63461-08-1	_
4	63459-01-1	63460-01-1	63461-01-1	_
5	63459-02-1	63460-02-1	63461-02-1	63465-1
6	63459-03-1	63460-03-1	63461-03-1	63465-1
7	63459-04-1	63460-04-1	63461-04-1	63465-1
8	63459-05-1	63460-05-1	63461-05-1	63465-1
9	63459-06-1	63460-06-1	63461-06-1	63465-1


NOTES:

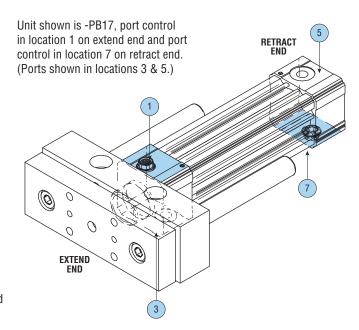
- 1) *Kits ship with cylinder mounting hardware
- 2) Part numbers listed above are intended for replacement purposes only and are to be used specifically on slides with the -H47 option.
- 3) Imperial port adaptor converts port from G 1/8 to 1/8 NPT.
- 4) When ordering a replacement cylinder (-H4), Rodlok must be ordered separately.

SIZE	DEVICE	WEIGHT	ADAPTOF	RWEIGHT	TOTAL WEIGHT			
SIZE	lb	kg	lb	kg	lb	kg		
2	0.14	0.06	0.14	0.06	0.31	0.14		
3	0.14	0.06	0.16	0.07	0.36	0.16		
4	0.20	0.09	0.28	0.13	0.57	0.26		
5	0.30	0.14	0.44	0.20	0.93	0.42		
6	0.54	0.24	0.84	0.38	1.76	0.80		
7	0.88	0.40	1.3	0.59	2.56	1.16		
8	1.40	0.64	2.88	1.31	5.04	2.29		
9	2.12	0.96	4.76	2.16	7.66	3.47		

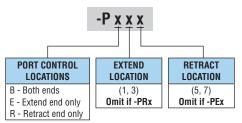
NOTE: Total weight includes rod adder for -H67/-H47 cylinder.

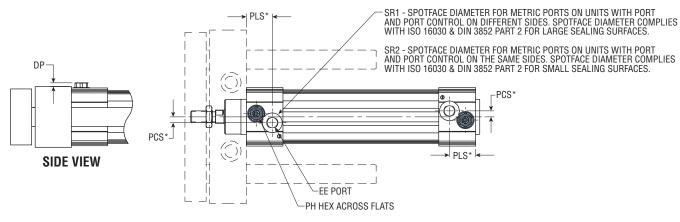
The Rodlok locking device and adaptor can be purchased separately as kits. See chart above. The locking device and adaptor are not available with a corrosion-resistant (-Z1 option) finish.

LETTED								MODEL	NUMBER							
LETTER DIM	SCVx2		SCVx3		SCVx4		SCVx5		SCVx6		SCVx7		SCVx8		SCVx9	
Dilii	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
Н	1.280	32.5	1.181	30.0	1.339	34.0	1.476	37.5	1.811	46.0	1.811	46.0	2.520	64.0	2.224	56.5
Е	0.807	20.5	0.807	20.5	0.984	25.0	1.083	27.5	1.280	32.5	1.614	41.0	1.929	49.0	2.087	53.0
G3	M5	M5	M5	M5	1/8	G 1/8	1/8	G 1/8	1/8	G 1/8	1/8	G 1/8	1/8	G 1/8	1/8	G 1/8
L5	1.575	40	1.732	44	1.890	48	2.165	55	2.756	70	2.756	70	3.543	90	3.622	92
L8	0.512	13	0.512	13	0.630	16	0.768	19.5	0.827	21	0.827	21	1.102	28	1.063	27
AA	5.394	137	5.866	149	6.969	177	7.874	200	8.858	225	9.449	240	10.945	278	11.614	295


OPTIONS: Series SCV Slides

PB PORT CONTROLS® ON BOTH ENDS (Standard location 1 & 5)


PE PORT CONTROLS® ON EXTEND ONLY (Standard location 1)


PR PORT CONTROLS® ON RETRACT ONLY (Standard location 5)

PHD's Port Control® is a built-in flow control for regulating the speed of the slide through its entire stroke. The Port Control operates on the "meter-out" principle and features an adjustable needle in a cartridge with a check seal. The self-locking needle has micrometer threads and is adjustable under pressure. The needle determines the orifice size which controls the exhaust flow rate of the actuator. The check seal expands while air is exhausting from the actuator, forcing the air to exhaust past the adjustable needle. The check seal collapses to allow a free flow of incoming air. The PHD Port Control saves space and eliminates the cost of fittings and installation for external flow control valves. Refer to option code to specify port control locations.

PORT CONTROL OPTIONS

LETTER								MODEL	NUMBER							
LETTER DIM	SCVx2		SCVx3		SCVx4		SCVx5		SCVx6		SCVx7		SCVx8		SCVx9	
DIIVI	in mm in		in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
EE*	10-32	M5	10-32	M5	1/8 NPT	G 1/8	1/4 NPT	G 1/4	1/4 NPT	G 1/4	3/8 NPT	G 3/8	3/8 NPT	G 3/8	1/2 NPT	G 1/2
PCS*	0.276	7.0	0.276	7.0	0.197	5.0	0.236	6.0	0.236	6.0	0.450	11.4	0.512	13.0	0.906	23.0
PH	_	2.5	_	2.5	_	2.5	_	2.5	_	2.5	_	3.0	_	3.0	_	6.0
PLS*	0.571	14.5	0.571	14.5	0.867	22.0	0.925	23.5	0.925	23.5	0.984	25.0	1.024	26.0	1.142	29.0
SR1*	_	16.5	_	16.5	_	19.0	_	25.0	_	25.0	_	28.0	_	28.0	_	34.0
SR2	0.354	9.0	0.354	9.0	_	16.5	_	19.0	_	19.0	_	23.0	_	23.0	_	27.0
DP*	0.066	1.7	0.026	0.7	0.209	5.3	0.122	3.1	0.024	0.6	0.004	0.1	-0.201	-5.1	-0.189	-4.8

NOTE: *Dimensions shown are for units with port and port control in the same location. For units with other port and port control combinations, standard port location dimensions apply. Ports may be located on either side of the slide centerline depending on port control and cushion option combinations.

UB

ALTERNATE PORT LOCATION

This option offers alternate port locations that can be specified, providing increased flexibility and customer convenience. See option code to specify port locations.

MAGNET FOR PHD REED AND SOLID STATE SWITCHES

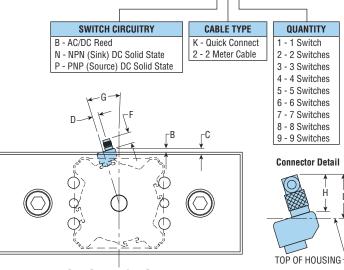
This option equips the cylinder with a magnetic band on the piston for use with PHD Reed and Solid State Switches listed to the right. These switches mount easily to the cylinder using "T" slots in the body. See the Switches section for complete switch information.

SERIES 6250 REED SWITCHES

PART NO.	DESCRIPTION	COLOR		
62507-1-02	AC/DC Reed, 2 meter cable	Silver		
62517-1	AC/DC Reed, Quick Connect	Silver		

SERIES 6250 SOLID STATE SWITCHES

PART NO.	DESCRIPTION	COLOR
62505-1-02	NPN (Sink) DC Solid State, 2 meter cable	Brown
62506-1-02	PNP (Source) DC Solid State, 2 meter cable	Tan
62515-1	NPN (Sink) DC Solid State, Quick Connect	Brown
62516-1	PNP (Source) DC Solid State, Quick Connect	Tan


SWITCH INCLUDED OPTIONS

SWITCH INCLUDED

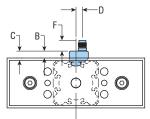
Switches are included, but not installed with this option. The -M option must be included when specifying this option. See option code to specify the switches to be included.

NOTE: Cordsets for Quick Connect are ordered separately. See page 94 and Switches section for complete ordering information.

-SA x x x

OUANTITY 1 - 1 Switch 2 - 2 Switches

4 - 4 Switches 5 - 5 Switches


6 - 6 Switches 7 - 7 Switches

8 - 8 Switches 9 - 9 Switches

Connector Detail

SIZES 7, 8, & 9 ONLY

Connec	tor Detail
-	← 0.236
0.200→	←
0.170	<u>_</u>
CABLE	0.525 H
_	1
TOP (OF HOUSING ¹

SIZES 2, 3, 4, 5, & 6 ONLY

LETTED								MODEL	NUMBER							
LETTER DIM	SCVx2		SCVx3		SCVx4		SCVx5		SCVx6		SCV	x7	SCVx8		SCVx9	
DIIVI	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
В	0.223	5.7	0.223	5.7	0.187	4.8	0.138	3.5	0.187	4.8	0.138	3.5	0.059	1.5	-0.079*	-2.0*
С	0.302	7.7	0.302	7.7	0.266	6.8	0.217	5.5	0.266	6.8	0.217	5.5	0.256	6.5	0.000	0.0
D	0.228	5.8	0.228	5.8	0.228	5.8	0.228	5.8	0.228	5.8	0.228	5.8	0.228	5.8	0.228	5.8
F	0.373	9.5	0.373	9.5	0.373	9.5	0.373	9.5	0.373	9.5	0.373	9.5	0.373	9.5	0.373	9.5
G	-	_	_	_	_	_	_	_	_	_	17°	17°	20°	20°	24°	24°
Н	0.870	22.1	0.870	22.1	0.870	22.1	0.870	22.1	0.870	22.1	0.831	21.1	0.819	20.8	0.795	20.2
I	1.113	28.3	1.113	28.3	1.077	27.3	1.008	25.6	1.037	26.3	0.969	24.6	0.878	22.3	0.717	18.2

NOTE: *Dimension is below the indicated surface.

